
Theme-D User Guide

Tommi Höynälänmaa

May 28, 2018

1

Contents

1 Installation 1
1.1 Debian-based systems . 1

1.1.1 Package guile-2.0-dev and Amd64 / Intel 64-bit x86
Processor Architecture . 2

1.1.2 Other Configurations . 2
1.2 Other Systems . 3
1.3 Local mode . 5

2 Removing the software 5
2.1 Debian-based systems . 5
2.2 Other systems . 6

3 Theme-D environment 6

4 File Extensions 6

5 Unit Root Directories 6

6 Compiling a Theme-D Unit 7

7 Linking a Theme-D Program 8

8 Running a Theme-D program 10

9 Distributing linked Theme-D programs 11

10 Compiling, Linking, and Running Test and Examples Programs 11

11 Other things 12

12 Comments 12

1 Installation

1.1 Debian-based systems

These instructions apply to Debian-based Linux distributions such as Debian
and Ubuntu. The default directory configuration of Theme-D is stored in file
/etc/theme-d-config.scm. You may override this by defining environment
variable THEME D CONFIG FILE to be the path of your own configuration file.
The root directory of the Theme-D installation shall be called theme-d-root-
dir . By default this is /usr/share/theme-d in Debian-based installations and
/usr/local/share/theme-d in other installations.

Install first one of the packages guile-2.0-dev or guile-2.2-dev. Note
that these packages can’t be installed simultaneously. Use command

sudo apt-get install guile-2.0-dev

or

1

sudo apt-get install guile-2.2-dev

You can check if these packages have already been installed with commands

dpkg -s guile-2.0-dev

dpkg -s guile-2.2-dev

1.1.1 Package guile-2.0-dev and Amd64 / Intel 64-bit x86 Processor
Architecture

1. Install TH Scheme Utilities version 1.4.1 in case you do not have it already.
Versions 1.3 and 1.4 work, too. See http://www.iki.fi/tohoyn/theme-d/.
Installation is done with command

sudo dpkg -i th-scheme-utilities 1.4.1 all.deb

in the directory where you have the Debian file.

2. Install libthemedsupport version 1.1 with command

sudo dpkg -i libthemedsupport 1.1 amd64.deb

in the directory where you have the Debian file.

3. Install Theme-D with command

sudo dpkg -i theme-d 1.1.0 amd64.deb

in the directory where you have the Debian file.

1.1.2 Other Configurations

1. Install TH Scheme Utilities version 1.4.1 in case you do not have it already.
Versions 1.3 and 1.4 work, too. See http://www.iki.fi/tohoyn/theme-d/.
Installation is done with command

sudo dpkg -i th-scheme-utilities 1.4.1 all.deb

in the directory where you have the Debian file.

2. Rebuild the libthemedsupport version 1.1 package for your architecture.
See instructions in the libthemedsupport documentation. Give the com-
mand

sudo dpkg -i libthemedsupport 1.1 arch.deb

2

in the directory where you have built the Debian package file. Here arch
is the name of your processor architecture.

3. Change to the directory where you want to unpack the Theme-D source
code

4. Unpack Theme-D source code with command

tar xzvf mypath/theme-d 1.1.0.tar.gz

where mypath is the path of the Theme-D package file.

5. Change to the subdirectory theme-d-1.1.0.

6. Change the architecture entry (10th line) in file debian/control from
amd64 to your processor architecture if necessary.

7. If you use Guile 2.2 change the value of the variable GUILE VERSION to 2.2
in file debian/rules (6th line).

8. Give command

dpkg-buildpackage -uc -us

9. Give commands

cd ..

sudo dpkg -i theme-d 1.1.0 arch.deb

where arch is the name of your processor architecture.

1.2 Other Systems

1. Install Guile 2.0 or 2.2 if you don’t have it already. Check the version of
the Guile development environment with commands

pkg-config --modversion guile-2.0

pkg-config --modversion guile-2.2

See http://www.gnu.org/software/guile/.

2. Install TH Scheme Utilities version 1.4.1 in case you do not have it already.
See the instructions in the TH Scheme Utilities documentation. Versions
1.3 and 1.4 work, too.

3. Install the libthemedsupport library version 1.1. See instructions in the
libthemedsupport documentation.

3

4. Create some directory and unpack Theme-D package there with command

tar xzvf theme-package-path/theme-d 1.1.0.tar.gz

The subdirectory theme-d-1.1.0 of the directory where you unpacked
Theme-D shall be called theme-d-source-dir .

5. Change to the the subdirectory theme-d-source-dir .

6. Give command

./configure

You may give the following options to command ./configure:

• --with-guile=version : Specify the Guile version explicitly. The
version has to be either 2.0 or 2.2.

• --without-support-library : Don’t use the libthemedsupport

library.

• --disable-extra-math : Don’t include the (standard-library extra-math)

module in your installation.

• --disable-posix-math : Don’t include the (standard-library posix-math)

module in your installation.

If you use option --without-support-library option you also have to
use options --disable-extra-math and --disable-posix-math.

7. Change to the the subdirectory theme-d-source-dir and give command

make

in order to prepare the code for installation. Install Theme-D with com-
mand

sudo make install-complete

If you have logged in as the root user you may use command

make install-complete

If you do not have sudo you may try command

su root make install-complete

Finally, give command

4

make compile-scheme-code

1.3 Local mode

Using Theme-D in the source code tree without installing it is called local mode.
This is useful if you develop Theme-D itself. It is recommended that you should
not use Theme-D simultaneously with Debian-based installation and in local
mode.

1. Install guile 2.0 in case you do not have it already. See http://www.gnu.org/software/guile/.

2. Install TH Scheme Utilities version 1.4.1 in case you do not have it already.
See the previous sections.

3. Install the libthemedsupport library version 1.1. See instructions in the
libthemedsupport documentation.

4. Create some directory and unpack Theme-D package there with command

tar xzvf theme-package-path/theme-d 1.1.0.tar.gz

5. Go into the the subdirectory theme-d-1.1.0 of the directory created in
the previous step. Give commands

./configure

make

make setup-local-config

See section 1.2 for the configure options.

2 Removing the software

2.1 Debian-based systems

Give command

sudo dpkg --purge theme-d

If you want to remove TH Scheme Utilities, too, give command

sudo dpkg --purge th-scheme-utilities

If you want to remove the libthemedsupport library give command

sudo dpkg --purge libthemedsupport

5

2.2 Other systems

Give command

sudo make uninstall-complete

in directory theme-d-source-dir . See documentation in TH Scheme Utilities
source package for instructions to remove the library. See documentation of
libthemedsupport for instructions how to remove the library.

3 Theme-D environment

4 File Extensions

Theme-D source files have the following extensions:

• .thp for proper programs

• .ths for scripts

• .thi for interfaces

• .thb for bodies

Theme-D compiled pseudocode files have the following extensions:

• .tcp for proper programs

• .tcs for scripts

• .tci for interfaces

• .tcb for bodies

5 Unit Root Directories

When you define a unit with full name

(dir-1 ... dir-n unit-name)

the module must have filename unit-name with proper extension (see the
previous section) and it must be located in subdirectory

dir-1/.../dir-n/

of some directory unit-root-dir . The directory unit-root-dir is called a unit
root directory. If a unit name has only one component you may omit the paren-
theses from the unit name. When you compile of link a Theme-D unit you
must specify one or more unit root directories where the imported modules are
searched. These are called the module search directories. You should always
have directory theme-d-root-dir/theme-d-code among the module search di-
rectories so that the standard libraries are found by the compiler and by the
linker.

6

6 Compiling a Theme-D Unit

Give command

theme-d-compile options unit-name

where unit-name is the file name of the Theme-D unit. Options are

• --module-path= paths or -m paths : Module search paths separated with
:’s

• --output= output-filename or -o output-filename : The output filename

• --unit-type= unit-type or -u unit-type : The unit type (program, interface,
or body)

• --message-level= message-level or -l message-level : Compiler message
level, integer number from 0 to 3.

• --expand-only : Do only macro expansion on the source.

• --no-expansion : Compile the source without macro expansion.

• --backtrace : Print backtrace on compilation error.

• --pretty-print : Pretty print the pseudocode output.

• --no-verbose-errors : Less information in the error messages.

• --show-modules : Show information about loading modules.

By default the unit type is computed from the source file extension. The
default module search path is theme-d-root-dir:.. If you use option -m you may
include the Theme-D default module search path in your custom path by adding
an extra “:” in the beginning of the new path, e.g. :my-path1:my-path2. The
default target file path is obtained by removing the path and the extension from
the source filename and appending the appropriate extension to the result. The
default message level is 1. Message level 0 means no output at all except in
case of error. Message level 1 displays also message on successful compilation
or linking. Message level 2 displays some debug information and level 3 a lot of
debug information. When --expand-only is set the default target filename is
myunit.expanded.thx for source file myunit.thx.

Suppose that you have your own Theme-D code at directory my-theme-d-dir
and you have a program called (mod-1 ... mod-n) at location

mod-1/.../mod-n.thp

In order to compile the program give commands

cd my-theme-d-dir
theme-d-compile mod-1/.../mod-n.thp

7

Suppose that you have a module (an interface and a body) with name (mod-1
... mod-n) in files mod-1/.../mod-n.thi and mod-1/.../mod-n.thb. In or-
der to compile the module give commands

cd my-theme-d-dir
theme-d-compile mod-1/.../mod-n.thi

theme-d-compile mod-1/.../mod-n.thb

If you want to have the compiled files in the same subdirectory where the
source files are, which is usually the case, give commands

cd my-theme-d-dir
theme-d-compile -o mod-1/.../mod-n.tci \
mod-1/.../mod-n.thi

theme-d-compile -o mod-1/.../mod-n.tcb \
mod-1/.../mod-n.thb

If you use Theme-D without installing it you have to use command

MYPATH/theme-d-VERSION/translator/theme-d-compile.scm

instead of theme-d-compile. Here MYPATH is the path where you have un-
packed Theme-D.

7 Linking a Theme-D Program

Give command

theme-d-link options program-name

where program-name is the file name of the Theme-D program. Options are

• --module-path= paths or -m paths : Module search paths separated with
:’s

• --output= output-filename or -o output-filename : The output filename

• --intermediate-file= filename : The output filename

• --intermediate-language= language : The language used for the inter-
mediate file, either tree-il or scheme.

• --message-level= message-level or -l message-level : Linker message
level, integer number from 0 to 3.

• --no-final-compilation : Do not compile the linker result file with
guild compile.

• --no-strip : Do not strip away unused code.

8

• --no-factorization : Do not factorize the type expressions out of pro-
cedure implementations.

• --no-weak-assertions : Do not check ordinary assertions. Strong asser-
tions are always checked.

• --backtrace : Print backtrace on linking error.

• --pretty-print : Pretty print the linker output.

• --no-verbose-errors : Less information in the error messages.

• --keep-intermediate : Keep the intermediate Tree-IL or Scheme file

• --link-to-cache : Link the target file into the guile cache.

• --runtime-pretty-backtrace : Generate the code to support runtime
pretty printed backtraces.

• --no-unlinked-procedure-names : Do not generate code for reporting
unlinked procedure names.

By default Theme-D linker produces a guile objcode file. Actually, Theme-
D makes a guile Tree-IL or Scheme file and uses guile to make an objcode
file from that. The default intermediate language is Tree-IL. Note that many
optimizations are performed only with Tree-IL. Runtime pretty backtraces are
supported only for Tree-IL. If you want to optimize your code for speed you
should link your program without pretty backtraces when you no longer need
them for debugging.

If you use option --module-path or -m you may include the Theme-D default
module search path in your custom path by an extra “:” in the path as in
compilation. Suppose that you have your own Theme-D code at directory my-
theme-d-dir and you have a program called (mod-1 ... mod-n) at location
mod-1/.../mod-n.thp. In order to link the program give commands

cd my-theme-d-dir
theme-d-link mod-1/.../mod-n.thp

The previous commands place the linked file into the root of subdirectory
my-theme-d-dir . If you want to place the linked file in the same directory where
the source files are use the following commands:

cd my-theme-d-dir
theme-d-link -o mod-1/.../mod-n.go \
mod-1/.../mod-n.thp

If you use Theme-D without installing it you have to use command

MYPATH/theme-d-VERSION/translator/theme-d-link.scm

instead of theme-d-link. Here MYPATH is the path where you have unpacked
Theme-D.

9

8 Running a Theme-D program

Suppose you have your linked Theme-D program in file my-prog.go. You can
run this program with command

run-theme-d-program my-prog.go

If you need to import your own Scheme files into the Theme-D runtime envi-
ronment (because of the foreign function interface) you can do this by defining
the environment variable THEME D CUSTOM CODE. Separate the file names with
:’s. The program run-theme-d-program accepts the following arguments:

• --no-verbose-errors : No verbose information about errors (excep-
tions).

• --pretty-backtrace : Display pretty printed backtrace on error.

Note that the --pretty-backtrace option works only if you have linked your
Theme-D program with option --runtime-pretty-backtrace.

If you use Theme-D without installing it you have to use command

MYPATH/theme-d-VERSION/runtime/run-theme-d-program.scm

instead of run-theme-d-program. Here MYPATH is the path where you have
unpacked Theme-D.

The pretty printed runtime backtrace has the following format:

number kind name module

...

where kind is the kind of the called procedure, name is the name of the procedure
and module is the module where the procedure has been defined. The kind may
take the following values:

• toplevel: A toplevel procedure

• local: A local procedure

• instance: An instance of a parametrized procedure

• zero: A procedure used to generate the zero value of a class

If you have linked a program to Scheme code (with options --intermediate-language=scheme
and --keep-intermediate) you can run the generated Scheme file with com-
mand

run-theme-d-program-scheme my-prog.scm

Note that the error option and the backtrace option are not supported with
run-theme-d-program-scheme.

10

9 Distributing linked Theme-D programs

If your target environment has Theme-D installed it is sufficient to distribute
only the linked .go file.

If you don’t want to assume this you need to distribute the following files:

• theme-d-VERSION/runtime/run-theme-d-program.scm

• theme-d-VERSION/runtime/runtime-theme-d-environment.go

• theme-d-VERSION/runtime/os-main.go

• theme-d-VERSION/runtime/theme-d-stdlib-support.go

• theme-d-VERSION/runtime/prt.go

• /etc/theme-d-config.scm or file .theme-d-config.scm in your home
directory.

If your target system doesn’t use the optimization of the mathematical proce-
dures you also need to distribute file theme-d-VERSION/runtime/theme-d-alt-support.go.
The optimization is on by default. These files are licensed under GNU Lesser
General Public License.

You have to ensure that the variable gl-theme-d-runtime-dir in the con-
figuration file points to the directory where you install the runtime environment.
Variable gl-use-support-lib? specifies whether you use the libthemedsupport
library or not. Other configuration variables are not used by the runtime envi-
ronment. If you use the support library the library libthemedsupport has to be
installed in the target system. The use of the support library is recommended.

10 Compiling, Linking, and Running Test and
Examples Programs

In order to install the Theme-D testing environment change to the directory
where you want the environment to be installed and give command

setup-theme-d-test-env.sh

This directory shall be called theme-d-test-dir in the sequel. The test pro-
grams are located in subdirectory test-env/theme-d-code/tests and the ex-
ample programs in test-env/theme-d-code/examples. Subdirectory tools

contains scripts to run tests.
The example programs are built by giving command make -f user.mk in

subdirectory test-env/theme-d-code/examples. The example programs are
run with command run-theme-d-program program.go.

If testX is a program compile it with command

theme-d-compile -m :.. testX.thp

and link with command

11

theme-d-link -m :.. testX.tcp

in directory theme-d-test-dir/test-env/theme-d-code/tests.
If testX is a module compile it with commands

theme-d-compile -m :.. testX.thi

theme-d-compile -m :.. testX.thb

in directory theme-d-test-dir/test-env/theme-d-code/tests.
Note that some test programs import test modules in which case you must

compile the modules before the program that uses them. When a test program
imports several test modules compile first all the interfaces of the imported
modules and then all the bodies of the imported modules. Compile the interfaces
in the order they are numbered. Note also that some test programs require the
examples to be built.

In order to run a test testX give commands

run-theme-d-program testX.go

in directory theme-d-test-dir/test-env/theme-d-code/tests.
If you want to build all the tests at once build the examples first. Then

change to the directory theme-d-test-dir/test-env/tools. Compile the tests
with command ./compile-tests.scm and link them with command ./link-test-programs.scm.
Then run the linked programs with command ./run-test-programs.scm. The
test results can be checked with commands check-test-compilation.scm,
check-test-program-linking.scm, and check-test-runs.scm, for compila-
tion, linking and running, respectively. All these scripts are located in directory
theme-d-test-dir/tools.

11 Other things

An Emacs mode for Theme-D can be found at tools/theme-d.el. There are
some example programs in subdirectory theme-d-code/examples in the Theme-
D source package. You can compile, link, and run them following the instruc-
tions given in sections 6, 7, and 8. If you install the Theme-D Debian package
twice the configuration file theme-d-config.scm may not be installed. This
problem is solved by uninstalling Theme-D and installing it again.

Theme-D translator uses the following notation for printing pair and tu-
ple types: (:pair r s) is printed as { r . s } and (:tuple t1 ... tn) is
printed as {t1 ... tn}. Note that this notation is not accepted in Theme-D
code.

12 Comments

The linker requires that the compiled modules are placed in a proper subdirec-
tory hierarchy under some directory among the module search directories. This
condition is fulfilled if you define the module search directories to include all

12

the unit root directories used by your source files and put the compiled files into
same directories with the source files.

13

