
Theme-D User Guide

Tommi Höynälänmaa

September 10, 2025

1

Contents

1 Copyright 1

2 General 2

3 Installation 2
3.1 Debian forky (testing) and sid (unstable) 2
3.2 Debian trixie (stable) and bookworm (oldstable) and Ubuntu . . 2
3.3 Debian bullseye (oldoldstable) . 3
3.4 Other UNIX Systems . 3

4 Building 3
4.1 Debian-based Systems . 3
4.2 Other UNIX Systems . 5
4.3 Using the Software without Installation 7

5 Removing the Software 7
5.1 Debian-based Systems . 7
5.2 Other Systems . 8

6 File Extensions 8

7 Unit Root Directories 8

8 Compiling a Theme-D Unit 9

9 Linking a Theme-D Unit 10

10 Running a Theme-D Program 13

11 Theme-D Configuration File 15

12 Distributing Linked Theme-D Programs 16

13 Bootstrapping Theme-D 17

14 Compiling, Linking, and Running Test and Example Programs 18

15 Computing Makefile Dependencies 22

16 Other Things 22

17 Comments 22

1 Copyright

Copyright © 2008-2025 Tommi Höynälänmaa

See file COPYING for the license.

1

2 General

This guide covers only UNIX systems. The software has been tested in Debian
and Ubuntu. Many of the commands in this guide have to be run as root. A
root session is opened either with command su root or sudo depending on your
system. In Ubuntu the command is sudo.

Symbol rev in the package names means the Debian revision of the packages.
It is typically 1 or 2. Symbol arch means the host system architecture, which
can be obtained by command

dpkg-architecture -q DEB HOST ARCH

The newest version of the software is built for Guile version 3.0.10. It is
possible to build Theme-D for Guile 3.0.7 but then you have to edit some de-
bianization files, see section 4.1.

3 Installation

3.1 Debian forky (testing) and sid (unstable)

If you use Synaptic Package Manager install the following packages:

• theme-d-rte

• theme-d-translator

• theme-d-stdlib

If you also want to have the documentation install package theme-d-doc, too.
The bootstrapped Theme-D system is contained in package theme-d-bootstrap.
In order to install the system from the command line give the following com-
mand:

sudo apt-get install theme-d-rte theme-d-translator theme-d-stdlib

and optionally one or both of the commands

sudo apt-get install theme-d-doc

sudo apt-get install theme-d-bootstrap

3.2 Debian trixie (stable) and bookworm (oldstable) and
Ubuntu

If you are satisfied with an older version of Theme-D follow the instructions in
section 3.1. Otherwise install Guile 3.0 with command

2

sudo apt install guile-3.0

Then follow section 4.1 to build and install Theme-D.

3.3 Debian bullseye (oldoldstable)

If you are satisfied with an older version of Theme-D follow the instructions in
section 3.1. Otherwise

1. Install Guile 3.0 version 3.0.8-2 to your system: Get files guile-3.0 3.0.8.orig.tar.xz

and guile-3.0 3.0.8-2.debian.tar.xz from

https://packages.debian.org/bookworm/guile-3.0.

Give commands

sudo apt install build-essential gperf devscripts

sudo apt-get build-dep guile-3.0

Create a new directory and copy the downloaded files there. Change the
working directory to the new directory and give commands

tar xvf guile-3.0 3.0.8.orig.tar.xz

cd guile-3.0-3.0.8.orig

tar xvf ../guile-3.0 3.0.8-2.debian.tar.xz

debuild -i -us -uc -b

cd ..

sudo dpkg -i guile-3.0-libs 3.0.8-2 arch.deb
sudo dpkg -i guile-3.0 3.0.8-2 arch.deb
sudo dpkg -i guile-3.0-dev 3.0.8-2 arch.deb
sudo dpkg -i guile-3.0-doc 3.0.8-2 all.deb

where the last command is optional.

2. Then follow section 4.1 to build and install Theme-D.

3.4 Other UNIX Systems

Follow the instructions in the next section.

4 Building

4.1 Debian-based Systems

These instructions apply to Debian-based Linux distributions such as Debian
and Ubuntu. You need Guile 3.0 version >= 3.0.7.

The default directory configuration of Theme-D is stored in file /etc/theme-d-config.
You may override this by defining environment variable THEME D CONFIG FILE to

3

be the path of your own configuration file. The root directory of the Theme-D in-
stallation shall be called theme-d-root-dir . By default this is /usr/share/theme-d
in Debian-based installations and /usr/local/share/theme-d in other instal-
lations.

Build and install Theme-D with the following steps:

1. Check if package guile-3.0-dev is installed with command

dpkg -s guile-3.0-dev

If you don’t have it install it with command

sudo apt-get install guile-3.0-dev

2. If your home directory contains file ∼/.theme-d-config delete the file.

3. Change to the directory where you want to unpack the Theme-D source
code.

4. Copy files theme-d-7.1.0.tar.xz and theme-d 7.1.0-rev.debian.tar.xz
into that directory.

5. Unpack Theme-D source code with command

tar xvf theme-d-7.1.0.tar.xz

6. Change to the subdirectory theme-d-7.1.0.

7. Give command

tar xvf ../theme-d 7.1.0-rev.debian.tar.xz

8. If you use Guile 3.0.7 change GUILE VERSION2 from 3.0.8 to 3.0.7 in
debian/rules and conditions (>= 3.0.8) to (>= 3.0.7) in debian/control.

9. Give commands

unset GUILE LOAD PATH

unset GUILE LOAD COMPILED PATH

dpkg-buildpackage -b --no-sign

cd ..

dpkg -i th-scheme-utilities 7.1.0-rev arch.deb
dpkg -i libthemedsupport 7.1.0-rev arch.deb

4

dpkg -i theme-d-rte 7.1.0-rev arch.deb
dpkg -i theme-d-translator 7.1.0-rev arch.deb
dpkg -i theme-d-stdlib 7.1.0-rev all.deb

where arch is the name of your processor architecture. These commands
have to be run as root.

10. If you want to install the Theme-D documentation give command

dpkg -i theme-d-doc 7.1.0-rev all.deb

as root.

11. If you want to install the Theme-D bootstrapped environment give com-
mand

dpkg -i theme-d-bootstrap 7.1.0-rev all.deb

as root.

4.2 Other UNIX Systems

1. If your home directory contains file ∼/.theme-d-config delete the file.

2. Install Guile 3.0 if you don’t have it already. Check the version of the
Guile development environment with command

pkg-config --modversion guile-3.0

See http://www.gnu.org/software/guile/.

3. Create some directory and unpack Theme-D package there with command

tar xvf theme-package-path/theme-d-7.1.0.tar.xz

The subdirectory theme-d-7.1.0 of the directory where you unpacked
Theme-D shall be called theme-d-source-dir .

4. Give commands

unset GUILE LOAD PATH

unset GUILE LOAD COMPILED PATH

In case you don’t use a sh compatible shell these commands may be dif-
ferent or you may just ignore them.

5. Change to the the subdirectory theme-d-source-dir .

5

6. Give command

./configure

You may give the following options to command ./configure:

• --with-guile=version : Specify the Guile version explicitly. Cur-
rently only version 3.0 is supported.

• --with-guile-program=file : Specify the Guile program used by the
software explicitly. The default is /usr/bin/guile-version.

• --with-guile-header-dir=directory : Specify the directory where
to find header file libguile.h for libthemesupport C compilation.
The default is not to specify the directory explicitly.

• --with-extension-dir=directory : Specify the directory where to
install Guile extensions.

• --with-guile-module-dir=directory : Specify the directory where
to install Guile modules.

• --with-guile-comp-module-dir=directory : Specify the directory
where to install compiled Guile modules.

• --with-conf-dir=directory : Specify the directory where to install
the global Theme-D configuration file. Default is /etc.

• --disable-xlat-opt-compilation : Use Guile optimization level 1
for compiling the Theme-D translator.

• --disable-rte-opt-compilation : Use Guile optimization level 1
for the runtime environment compilation.

• --without-support-library : Don’t use the libthemedsupport

library.

• --disable-extra-math : Don’t include the (standard-library extra-math)

module in your installation.

• --disable-posix-math : Don’t include the (standard-library posix-math)

module in your installation.

If you use option --without-support-library option you also have to
use options --disable-extra-math and --disable-posix-math.

7. Change to the the subdirectory theme-d-source-dir and give command

make

in order to prepare the code for installation. Install Theme-D by giving
command

make install-complete

as root.

6

4.3 Using the Software without Installation

This sofware may also be used without installing it. This is useful if you develop
Theme-D itself.

1. Install Guile 3.0 in case you do not have it already. See

http://www.gnu.org/software/guile/

2. Create some directory and unpack Theme-D package there with command

tar xvf theme-package-path/theme-d-7.1.0.tar.xz

3. Go into the the subdirectory theme-d-7.1.0 of the directory created in
the previous step. Give commands

./configure

make

See section 4.2 for the configure options.

In order to use Theme-D change to the subdirectory meta and give command

./uninstalled-env bash

Now the commands theme-d-compile, theme-d-link, and run-theme-d-program
are available for you.

5 Removing the Software

5.1 Debian-based Systems

Give commands

dpkg --purge theme-d-stdlib

dpkg --purge theme-d-translator

dpkg --purge theme-d-rte

dpkg --purge libthemedsupport

dpkg --purge th-scheme-utilities

as root. In order to remove the Theme-D documentation give command

dpkg --purge theme-d-doc

7

as root. The bootstrapped environment can be removed with command

dpkg --purge theme-d-bootstrap

5.2 Other Systems

Give command

make uninstall-complete

as root in directory theme-d-source-dir .

6 File Extensions

Theme-D source files have the following extensions:

• .thp for proper programs

• .ths for scripts

• .thi for interfaces

• .thb for bodies

Theme-D compiled pseudocode files have the following extensions:

• .tcp for proper programs

• .tcs for scripts

• .tci for interfaces

• .tcb for bodies

The auxiliary module files use extension .aux.

7 Unit Root Directories

When you define a unit with full name

(dir-1 ... dir-n unit-name)

the module must have filename unit-name with proper extension (see the pre-
vious section) and it must be located in subdirectory

dir-1/.../dir-n/

of some directory unit-root-dir . The directory unit-root-dir is called a unit root

8

directory. If a unit name has only one component you may omit the parentheses
from the unit name. When you compile of link a Theme-D unit you must specify
one or more unit root directories where the imported modules are searched.
These are called themodule search directories. You should always have directory
theme-d-root-dir/theme-d-code among the module search directories so that
the standard libraries are found by the compiler and by the linker.

8 Compiling a Theme-D Unit

Give command

theme-d-compile options unit-name

where unit-name is the file name of the Theme-D unit. Options are

• --module-path= paths or -m paths : Module search paths separated with
:’s

• --output= output-filename or -o output-filename : The output filename

• --unit-type= unit-type or -u unit-type : The unit type (proper-program,
script, interface, or body)

• --message-level= message-level or -l message-level : Compiler message
level, integer number from 0 to 3.

• --expand-only : Do only macro expansion on the source.

• --no-expansion : Compile the source without macro expansion.

• --backtrace : Print backtrace on compilation error.

• --pretty-print : Pretty print the pseudocode output.

• --no-verbose-errors : Less information in the error messages.

• --show-modules : Show information about loading modules.

• --version : Show Theme-D version number and exit.

By default the unit type is computed from the source file extension. The
default module search path is theme-d-root-dir:.. If you use option -m you may
include the Theme-D default module search path in your custom path by adding
an extra “:” in the beginning of the new path, e.g. :my-path1:my-path2. The
default target file path is obtained by removing the path and the extension from
the source filename and appending the appropriate extension to the result. The
default message level is 1. Message level 0 means no output at all except in
case of error. Message level 1 displays also message on successful compilation
or linking. Message level 2 displays some debug information and level 3 a lot of
debug information. When --expand-only is set the default target filename is
myunit.expanded.thx for source file myunit.thx.

Suppose that you have your own Theme-D code at directory my-theme-d-dir
and you have a program called (mod-1 ... mod-n) at location

9

mod-1/.../mod-n.thp

In order to compile the program give commands

cd my-theme-d-dir
theme-d-compile mod-1/.../mod-n.thp

Suppose that you have a module (an interface and a body) with name (mod-1

... mod-n) in files mod-1/.../mod-n.thi and mod-1/.../mod-n.thb. In or-
der to compile the module give commands

cd my-theme-d-dir
theme-d-compile mod-1/.../mod-n.thi

theme-d-compile mod-1/.../mod-n.thb

If you want to have the compiled files in the same subdirectory where the source
files are, which is usually the case, give commands

cd my-theme-d-dir
theme-d-compile -o mod-1/.../mod-n.tci \
mod-1/.../mod-n.thi

theme-d-compile -o mod-1/.../mod-n.tcb \
mod-1/.../mod-n.thb

If you use Theme-D without installing it you have to use command

MYPATH/theme-d-VERSION/theme-d/translator/theme-d-compile.scm

instead of theme-d-compile. Here MYPATH is the path where you have unpacked
Theme-D.

9 Linking a Theme-D Unit

A Theme-D unit can be linked either monolithically or modularly. In mono-
lithic linking a Theme-D program is linked into a single Guile bytecode file.
In modular linking Theme-D units are linked to separate Guile bytecode mod-
ules. For a Theme-D module MYMODULE the target interface module is named
intf MYMODULE.go and the target body module impl MYMODULE.go. The

auxiliary module files are named intf MYMODULE.aux and impl MYMODULE.aux.
Theme-D dynamical plugin features can only be used with modular linking,

In order to link a Theme-D program monolithically give command

theme-d-link options program-name

where program-name is the file name of the Theme-D program. In order to link

10

a Theme-D unit to a Guile module give command

theme-d-link options program-name

where program-name is the file name of the Theme-D unit and options contains
--module. Available options are

• --module-path= paths or -m paths : Module search paths separated with
:’s

• --guile-target-path= paths : Guile target module search paths sepa-
rated with :’s

• --empty-guile-target-path : Set Guile target module search path to
be empty.

• --full-module-path= paths or -M paths : Equivalent to

--module-path=paths --guile-target-path=paths.

• --unit-type= unit-type : Specify the unit type explicitly. Argument unit-
type has to be one of proper-program, script, body, or interface.

• --output= output-filename or -o output-filename : The output filename.

• --intermediate-file= filename or -n filename : The intermediate file-
name.

• --intermediate-language= language or -i language : The language used
for the intermediate file.

• -x module: Link (load) the module into the target program.

• --message-level= message-level or -l message-level : Linker message
level, integer number from 0 to 3.

• --no-final-compilation : Do not compile the linker result file with
guild compile.

• --no-strip : Do not strip away unused code.

• --no-optimization : Do not optimize linker output.

• --no-factorization : Do not factorize the type expressions out of pro-
cedure implementations.

• --no-weak-assertions : Do not check ordinary assertions. Strong asser-
tions are always checked.

• --backtrace : Print backtrace on linking error.

• --pretty-print : Pretty print the linker output.

11

• --no-verbose-errors : Less information in the error messages.

• --keep-intermediate : Keep the intermediate Tree-IL or Scheme file

• --link-to-cache : Link the target file into the Guile cache.

• --runtime-pretty-backtrace : Generate the code to support runtime
pretty printed backtraces.

• --no-unlinked-procedure-names : Do not generate code for reporting
unlinked procedure names.

• --module-debug-output : Print debug messages when a module body
linkage is started and ended.

• --show-inst-number : Print the expression numbers of the processed
expressions in parametrized type instantiation.

• --check-all-primitives : Check that primitive procedure result values
match the result types for all primitives, including those defined with
unchecked-prim-proc.

• --duplicates= symbols : Set the values passed to default-duplicate-binding-handler
in the target program. If there are several symbols enclose them in quotes.

• --split : Split the linker output.

• --split-dir= dir : Set the directory where to put the split linker output.

• --split-basename= name : Set the basename for split linker output files.

• --guile-opt-level= level : Set the optimization level for the final Guile
compilation. The default is 1.

• --extra-guild-options= options : Define the extra options passed to
guild when compiling the intermediate code to Guile bytecode.

• --plugin : Link a module body to a plugin. This option implies --module.

• --version : Show Theme-D version number and exit.

The available intermediate languages are:

• tree-il-3.0 : Guile 3.0 Tree-IL.

• guile-3.0 : Guile Scheme 3.0.

You may use aliases tree-il and guile. Using intermediate language guile0 is
equivalent to options -i guile --no-optimization. The option --no-optimization
has no effect for the Tree-IL target platform. It is always optimized. By de-
fault Theme-D linker produces a Guile objcode file. Actually, Theme-D makes
a Guile Tree-IL or Scheme file and uses Guile to make an objcode file from that.
The default intermediate language is Tree-IL. Note that many optimizations are
performed only with Tree-IL. If you want to optimize your code for speed you
should link your program without pretty backtraces when you no longer need
them for debugging. If you use Tree-IL as the intermediate language pretty

12

printing may cause the linker to crash with large programs. The syntax of the
module name in the -x option is "(mod1 ... modn)".

If you use option --module-path or -m you may include the Theme-D default
module search path in your custom path by an extra “:” in the path as in
compilation. Suppose that you have your own Theme-D code at directory my-
theme-d-dir and you have a program called (mod-1 ... mod-n) at location
mod-1/.../mod-n.thp. In order to link the program give commands

cd my-theme-d-dir
theme-d-link mod-1/.../mod-n.thp

The previous commands place the linked file into the root of subdirectory my-
theme-d-dir . If you want to place the linked file in the same directory where
the source files are use the following commands:

cd my-theme-d-dir
theme-d-link -o mod-1/.../mod-n.go \
mod-1/.../mod-n.thp

If you have so big program that your system hangs with it it is useful to
split the linker output to several intermediate files. You can do this by giving
option --split to the linker. The linker output files are placed on a separate
subdirectory. By default this subdirectory is called program.compiled. You can
change the directory name with option --split-dir. You can also change the
basename of the output files with option --split-basename. Note that script
run-split-theme-d-program does not work if you change the basename.

If option --no-final-compilation is not given the Tree-IL or Scheme file
generated by the linker is compiled to Guile bytecode with command guild

compile. Option --guile-opt-level specifies the optimization level of the
final Guile compilation. Option -Olevel is passed to program guild. The default
optimization level is 1. Note that invoking the Guile optimization of letrec

expressions requires the optimization level to be at least 2. The Guile target
path is used to set the value of environment variable GUILE LOAD COMPILED PATH

to the guild command.

10 Running a Theme-D Program

When you use Guile as the target platform Theme-D programs can be run with
command

run-theme-d-program metaarg ... programfile programarg ...

where metaarg are the arguments passed to the script run-theme-d-program,
programfile is the filename of the linked Theme-D program, and programarg are
the arguments passed to the program. Suppose you have your linked Theme-D
program in file myprog.go. You can run this program with command

13

run-theme-d-program myprog.go

When you use Guile as the target platform it is also possible to link you Theme-
D program into a .scm intermediate file and run it with command

guile -e main -s programfile.scm programarg ...

or

guile -s programfile.scm programarg ...

for scripts.
If you need to import your own Scheme files into the Theme-D runtime envi-

ronment (because of the foreign function interface) you can do this by defining
the environment variable THEME D CUSTOM CODE. Separate the file names with
:’s. However, it is recommended to use option -x for this.

The program run-theme-d-program accepts the following arguments:

• --no-verbose-errors : No verbose information about errors (excep-
tions).

• --backtrace : Display backtrace on error.

• --pretty-backtrace : Display pretty printed backtrace on error.

• --version : Show Theme-D version number and exit.

Note that the --pretty-backtrace option works only if you have linked your
Theme-D program with option --runtime-pretty-backtrace.

In order to run a Theme-D program with split linker output give command

run-split-theme-d-program dir-name

where dir-name is the directory where the linker output is generated.
In order to run a modularly linked Theme-D program give command

run-theme-d-program-m -g guile-target-path program

where program is a .go file created by the linker and guile-target-path is the
path used to search Guile modules. Normally you should use path root-dir:
where root-dir is the unit root directory of your program. Note that you don’t
need to include Guile cache directories into the Guile target path.

The pretty printed runtime backtrace has the following format:

number kind name module

...

where kind is the kind of the called procedure, name is the name of the procedure

14

and module is the module where the procedure has been defined. The kind may
take the following values:

• toplevel: A toplevel procedure

• local: A local procedure

• instance: An instance of a parametrized procedure

• zero: A procedure used to generate the zero value of a class

11 Theme-D Configuration File

The Theme-D configuration file is searched according to the following rules:

• Use the value of environment variable THEME D CONFIG FILE is it is de-
fined.

• Use file .theme-d-config in the user’s home directory if present.

• Otherwise use file /etc/theme-d-config.

The installation procedure sets up the configuration file. Normally you don’t
have to edit it.

The configuration file has the following format:

(theme-d (var-name var-value)...)

All string type variable values must be enclosed in quotes. Boolean and integer
values must not be enclosed in quotes The variables defined in the configuration
file are:

• guile-version: The Guile version used by Theme-D. This is a string.

• translator-dir: The location of the compiler and linker implementa-
tions.

• runtime-dir: The location of the Theme-D runtime environment.

• lib-dir: The location of the Theme-D standard library.

• examples-dir: The location of the Theme-D examples.

• tests-dir: The location of the Theme-D tests.

• tools-dir: The location of the Theme-D tools.

• bootstrap-dir: The location of the Theme-D bootstrap environment
sources.

• compiler-path Theme-D compiler path (a .scm file).

• linker-path Theme-D linker path (a .scm file).

• run-path Theme-D run script path path (a .scm file).

15

• use-support-lib?: #t if the support library is used. This is a boolean
value.

The values of the configuration variables can be fetched with command

get-theme-d-config-var config-var-name

where config-var-name is the name of the configuration variable.

12 Distributing Linked Theme-D Programs

If your target environment has Theme-D installed it is sufficient to distribute
only the linked .go file. If your target system is using a Debian-based Linux
system (e.g. Debian or Ubuntu) and you don’t want to install whole Theme-D
into it the easiest way to ensure that all the necessary files are present is to
install packages theme-d-rte, th-scheme-utilities, and libthemedsupport

into the target system.
If you are using Guile in a non-Debian system you have to ensure that the

following files are present in the Guile library path:

• theme-d/runtime/params.go

• theme-d/runtime/runtime-theme-d-environment.go

• theme-d/runtime/theme-d-stdlib-support.go

You also need to distribute one of the following files:

• theme-d/runtime/theme-d-support-all.go

• theme-d/runtime/theme-d-support-no-extra.go

• theme-d/runtime/theme-d-support-no-posix.go

• theme-d/runtime/theme-d-alt-support.go

and create symbolic link theme-d/runtime/theme-d-support.go pointing to
it. If your program uses modular linking you also have to distribute files
standard-library/ intf *.go, standard-library/ intf *.aux, files standard-library/ impl *.go,
and standard-library/ impl *.aux.

In order to find the library path give command

pkg-config --variable=siteccachedir guile-version

Normally you should use file theme-d-support-all.go. If you don’t use the
Theme-D support library you must use theme-d-alt-support.go. If you dis-
tribute a .go file you also need to have run-theme-d-program.scm in the target
system. These files are licensed under GNU Lesser General Public License.

If you use the support library the library libthemedsupport has to be in-
stalled in the target system. The use of the support library is recommended.

16

13 Bootstrapping Theme-D

The Theme-D source package contains a bootstrapped version of Theme-D,
i.e. Theme-D compiler and linker implemented with Theme-Ditself. Note that
the bootstrap environment is not yet part of the Theme-D Debian or Ubuntu
packages. To install the bootstrap environment change to the directory where
you want to install it and give command

setup-theme-d-bootstrap-env

Note that you must have either Theme-D installed on your system or use the
uninstalled version of the software, see section 4.3.

First you have to build Theme-Dwritten in itself using compiler and linker
written in Guile. Change to the theme-d-bootstrap directory and give the
following commands:

cd build1/theme-d-in-theme-d

make -f user.mk

or if you want to use modular linking

cd build1/theme-d-in-theme-d

LINK MODULES=1 make -f user.mk

Then you build Theme-Dusing the compiler and linker built in the previous
step:

cd ../../bootstrap/theme-d-in-theme-d

make -f user.mk

or if you want to use modular linking

cd ../../bootstrap/theme-d-in-theme-d

LINK MODULES=1 make -f user.mk

If you use modular linking with build1 you have to define variable MODULAR TRANSLATOR

with bootstrap, e.g.

cd ../../bootstrap/theme-d-in-theme-d

MODULAR TRANSLATOR=1 LINK MODULES=1 make -f user.mk

Now you have the bootstrapped Theme-D compiler and linker in files theme-d-compile-b.go
and theme-d-link-b.go in subdirectory theme-d-bootstrap/bootstrap/theme-d-in-theme-d.
We denote the path to this directory by BOOTSTRAPPATH. You can use these pro-
grams with commands

run-theme-d-program BOOTSTRAPPATH/theme-d-compile-b.go ARGUMENTS

17

and

run-theme-d-program BOOTSTRAPPATH/theme-d-link-b.go ARGUMENTS

or if you use modular linking

run-theme-d-program-m -g BOOTSTRAPPATH2: \
BOOTSTRAPPATH2/theme-d-in-theme-d/theme-d-compile-b.go ARGUMENTS

and

run-theme-d-program-m -g BOOTSTRAPPATH2: \
BOOTSTRAPPATH2/theme-d-in-theme-d/theme-d-link-b.go ARGUMENTS

where BOOTSTRAPPATH2 is the path to directory bootstrap.

14 Compiling, Linking, and Running Test and
Example Programs

In order to install the Theme-D testing environment change to the directory
where you want the environment to be installed and give command

setup-theme-d-test-env

This directory shall be called theme-d-test-dir in the sequel. The test programs
are located in subdirectory test-env/theme-d-code/tests and the example
programs in test-env/theme-d-code/examples. Subdirectory tools contains
scripts to run tests.

The example programs are built by giving command make -f user.mk in
subdirectory test-env/theme-d-code/examples. If you want to use modular
linking use command

LINK MODULES=1 make -f user.mk

The example programs are run with command run-theme-d-program pro-
gram.go.

If testX is a program compile it with command

theme-d-compile -m ..: testX.thp

18

and link with command

theme-d-link -m ..: testX.tcp

or

theme-d-link --module -M ..: testX.tcp

in directory theme-d-test-dir/test-env/theme-d-code/tests.
If testX is a module compile it with commands

theme-d-compile -m ..: testX.thi

theme-d-compile -m ..: testX.thb

in directory theme-d-test-dir/test-env/theme-d-code/tests. If you use mod-
ular linking you also have to link the units with commands

theme-d-link --module -M ..: testX.tci

theme-d-link --module -M ..: testX.tcb

Note that some test programs import test modules in which case you must
compile the modules before the program that uses them. When a test program
imports several test modules compile first all the interfaces of the imported
modules and then all the bodies of the imported modules. Compile the interfaces
in the order they are numbered. Note also that some test programs require the
examples to be built.

In order to run a test testX give commands

run-theme-d-program testX.go

or

run-theme-d-program-m -g ..: testX.go

in directory theme-d-test-dir/test-env/theme-d-code/tests.
If you want to build all the tests at once build the examples first. Then

change to the directory theme-d-test-dir/test-env/testing. Compile the tests
with command

./compile-tests.scm

Then you can link the programs monolithically with command

./link-test-programs.scm

or link all units modularly with command

19

./link-to-modules.scm

Then run the linked programs with command

./run-test-programs.scm

in case of monolithic linking and

./run-test-programs-m.scm

in case of modular linking. The compilation results can be checked with com-
mand

./check-test-compilation.scm

Results of monolithic linking and running can be checked with

./check-test-program-linking.scm

./check-test-runs.scm

and for modular linking and running with

./check-test-module-linking.scm

./check-test-runs-m.scm

All these scripts are located in directory theme-d-test-dir/testing.
You can generate the test output into the subdirectory output with com-

mand

./run-test-programs-w-output.scm

or

./run-test-programs-w-output-m.scm

in case of modular linking. Use command ./compare-output.sh to compare
the output files with the correct ones. The correct outputs of the tests can be
found in subdirectory tests in files test*.out. The outputs of tests test450
and test756 may vary because of output buffering. The computed hash values
in test test587 and the order of elements in hash tables in tests test826 and
test827 may also vary. The backtrace in test764 and the path in test598 may
be different in different runs. The values of environment variable HOME printed
by test820 are different in different systems. For modular linking, different
outputs are reported for test cases test132, test135, test136, test173, and
test472 due to different internal variable names.

If you want to build the examples with the bootstrapped compiler and linker
set the environment variables THEME D COMPILE to

20

run-theme-d-program MYPATH/theme-d-in-theme-d/theme-d-compile-b.go

and THEME D LINK to

run-theme-d-program MYPATH/theme-d-in-theme-d/theme-d-link-b.go

or in case of modular linking to

run-theme-d-program-m -g MYPATH \
MYPATH/theme-d-in-theme-d/theme-d-compile-b.go

and

run-theme-d-program-m -g MYPATH \
MYPATH/theme-d-in-theme-d/theme-d-link-b.go

Here MYPATH is either directory build1 or bootstrap in the bootstrapped
environment. If you want to use the bootstrapped compiler give option -b

MYPATH/theme-d-in-theme-d/theme-d-compile-b.go or -B MYPATH to com-
mand compile-tests.scm. If your bootstrapper compiler uses split linking
give option -s MYPATH/theme-d-in-theme-d/theme-d-compile-b.build.

Programs compile-tests.scm, link-test-programs.scm, and link-to-modules.scm
accept the following options:

• -b bootstrapped-linker-path: Use the bootstrapped linker. The argument
is the path to file theme-d-link-b.go.

• -B bootstrapped-linker-dir : Use the modularly linked bootstrapped linker.
The argument shall be either directory build1 or bootstrap in the boot-
strapped environment.

• -s split-dir : Use linker linked with split linking.

Programs link-test-programs.scm and link-to-modules.scm accept also the
following options:

• -i backend : Select the linker backend. The value of backend has to be
either tree-il, guile, or guile0. Value guile0 means the nonoptimized
Guile backend. The default value is tree-il.

• -k : Do not delete the intermediate file (.tree-il or .scm).

Command compile-tests.scm passes the contents of environment variable
EXTRA COMP OPTIONS to the compiler. Command link-test-programs.scm

passes the contents of environment variable EXTRA LINK OPTIONS to the linker.
If you want to clean the testing environment in order to rebuild and rerun

the examples and the tests give command ./clean-test-env.sh in the sub-
directory testing. If you want to keep the compilation output but clean the
other files use command ./link-clean-test.env.sh.

21

15 Computing Makefile Dependencies

The software includes three scripts to compute makefile dependencies for Theme-
D files: compute-theme-d-pcode-deps for Theme-D pseudocode files (*.tc?),
compute-theme-d-program-deps for monolithically linked programs (*.go),
and compute-theme-d-module-deps for modularly linked modules (*.go). Each
of these commands takes two arguments: the source code file (*.th?) for which
to compute the dependencies and the unit path to specify the units included in
the dependency computation. Only dependencies with the specified unit path
are included. The unit path is computed from the unit name by dropping the
last symbol. For example, set the second argument to examples for the example
programs.

16 Other Things

An Emacs mode for Theme-D can be found at tools/theme-d.el. There are
some example programs in subdirectory theme-d-code/examples in the Theme-
D source package. You can compile, link, and run them following the instruc-
tions given in sections 8, 9, and 10. If you install the Theme-D Debian package
twice the configuration file theme-d-config may not be installed. This problem
is solved by uninstalling Theme-D and installing it again.

Theme-D translator uses the following notation for printing pair and tu-
ple types: (:pair r s) is printed as { r . s } and (:tuple t1 ... tn) is
printed as {t1 ... tn}. Note that this notation is not accepted in Theme-D
code.

17 Comments

The linker requires that the compiled modules are placed in a proper subdirec-
tory hierarchy under some directory among the module search directories. This
condition is fulfilled if you define the module search directories to include all
the unit root directories used by your source files and put the compiled files into
same directories with the source files.

22

